Recent developments in wearable breath sensors for healthcare monitoring

Recent developments in wearable breath sensors for healthcare monitoring

  • Winters, B. R. et al. Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device. J. Breath Res. 11, 047107 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Risby, T. H. & Solga, S. Current status of clinical breath analysis. Appl. Phys. B 85, 421–426 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Minh, T. D. C., Blake, D. R. & Galassetti, P. R. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res. Clin. Pract. 97, 195–205 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, H., Abu‐Raya, Y. S. & Haick, H. Advanced materials for health monitoring with skin‐based wearable devices. Adv. Healthc. Mater. 6, 1700024 (2017).

    Article 

    Google Scholar 

  • Gao, Y., Yu, L., Yeo, J. C. & Lim, C. T. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32, 1902133 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yin, R., Wang, D., Zhao, S., Lou, Z. & Shen, G. Wearable sensors‐enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2021).

    Article 
    CAS 

    Google Scholar 

  • Muthu, B. et al. IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer-to-Peer Netw. Appl. 13, 2123–2134 (2020).

    Article 

    Google Scholar 

  • Dai, N. et al. Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy 105, 108041 (2022).

  • Dinh, T. et al. Stretchable respiration sensors: advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 166, 112460 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ates, H. C. & Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 1, 80–82 (2023).

    Article 

    Google Scholar 

  • Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 18, 163–171 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lawal, O., Ahmed, W. M., Nijsen, T. M., Goodacre, R. & Fowler, S. J. Exhaled breath analysis: a review of ‘breath-taking’methods for off-line analysis. Metabolomics 13, 1–16 (2017).

    Article 
    CAS 

    Google Scholar 

  • Holden, K. A. et al. Use of the ReCIVA device in breath sampling of patients with acute breathlessness: a feasibility study. ERJ Open Res. 6, 00119–02020 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horváth, I., Hunt, J. & Barnes, P. J. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26, 523–548 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Konstantinidi, E. M., Lappas, A. S., Tzortzi, A. S. & Behrakis, P. K. Exhaled breath condensate: technical and diagnostic aspects. Sci. World J. 2015, 435160 (2015).

    Article 

    Google Scholar 

  • Soto, F. et al. Wearable collector for noninvasive sampling of SARS-CoV-2 from exhaled breath for rapid detection. ACS Appl. Mater. Interfaces 13, 41445–41453 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, S.-H., Di, D., Yuan, Z.-C., Chen, W. & Hu, B. Paper-in-facemask device for direct mass spectrometry analysis of human respiratory aerosols and environmental exposures via wearable continuous-flow adsorptive sampling: a proof-of-concept study. Anal. Chem. 93, 13743–13748 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Z.-C. et al. Solid-phase microextraction fiber in face mask for in vivo sampling and direct mass spectrometry analysis of exhaled breath aerosol. Anal. Chem. 92, 11543–11547 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Daniels, J. et al. A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K.-H., Jahan, S. A. & Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 33, 1–8 (2012).

    Article 

    Google Scholar 

  • Sola Martínez, R. A. et al. Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources. Sci. Rep. 10, 22008 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, D. & Španěl, P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC Trends Anal. Chem. 30, 945–959 (2011).

    Article 
    CAS 

    Google Scholar 

  • Vendel, I., Hertog, M. & Nicolaï, B. Fast analysis of strawberry aroma using SIFT-MS: a new technique in postharvest research. Postharvest Biol. Technol. 152, 127–138 (2019).

    Article 
    CAS 

    Google Scholar 

  • Metsälä, M. Optical techniques for breath analysis: from single to multi-species detection. J. Breath. Res. 12, 027104 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Banik, G. D. & Mizaikoff, B. Exhaled breath analysis using cavity-enhanced optical techniques: a review. J. Breath. Res. 14, 043001 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl. Acad. Sci. 118, e2105063118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, L. et al. Noninvasive diagnosis of gastric cancer based on breath analysis with a tubular surface-enhanced Raman scattering sensor. ACS Sens. 7, 1439–1450 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajavel, K., Lalitha, M., Radhakrishnan, J. K., Senthilkumar, L. & Rajendra Kumar, R. T. Multiwalled carbon nanotube oxygen sensor: enhanced oxygen sensitivity at room temperature and mechanism of sensing. ACS Appl. Mater. Interfaces 7, 23857–23865 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, L. et al. Polymeric Ti3C2T x MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020).

    Article 
    CAS 

    Google Scholar 

  • Maity, D. & Kumar, R. T. R. Polyaniline anchored MWCNTs on fabric for high performance wearable ammonia sensor. ACS Sens. 3, 1822–1830 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. J. et al. Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Assen, A. H., Yassine, O., Shekhah, O., Eddaoudi, M. & Salama, K. N. MOFs for the sensitive detection of ammonia: Deployment of fcu-MOF thin films as effective chemical capacitive sensors. ACS Sens. 2, 1294–1301 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pandey, S. & Nanda, K. K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. Acs Sens. 1, 55–62 (2016).

    Article 
    CAS 

    Google Scholar 

  • Shahmoradi, A., Hosseini, A., Akbarinejad, A. & Alizadeh, N. Noninvasive detection of ammonia in the breath of hemodialysis patients using a highly sensitive ammonia sensor based on a polypyrrole/sulfonated graphene nanocomposite. Anal. Chem. 93, 6706–6714 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Houspie, L. et al. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses. Virol. J. 8, 1–7 (2011).

    Article 

    Google Scholar 

  • Zheng, Y., Chen, H., Yao, M. & Li, X. Bacterial pathogens were detected from human exhaled breath using a novel protocol. J. Aerosol Sci. 117, 224–234 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Singer, M. et al. Dangers of hyperoxia. Crit. Care 25, 1–15 (2021).

    Article 

    Google Scholar 

  • Webster, W. S. & Abela, D. The effect of hypoxia in development. Birth Defects Res. C Embryo Today Rev. 81, 215–228 (2007).

    Article 
    CAS 

    Google Scholar 

  • Wu, Z. et al. A humidity‐resistant, sensitive, and stretchable hydrogel‐based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34, 2308280 (2023).

  • Weinberger, S. E., Schwartzstein, R. M. & Weiss, J. W. Hypercapnia. N. Engl. J. Med. 321, 1223–1231 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laffey, J. G. & Kavanagh, B. P. Hypocapnia. N. Engl. J. Med. 347, 43–53 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hodgkinson, J., Smith, R., Ho, W. O., Saffell, J. R. & Tatam, R. P. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuators B Chem. 186, 580–588 (2013).

    Article 
    CAS 

    Google Scholar 

  • Swinehart, D. F. The beer-lambert law. J. Chem. Educ. 39, 333 (1962).

    Article 
    CAS 

    Google Scholar 

  • Escobedo, P. et al. Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eswaran, A., Thirumalainambi, M., Subramaniam, R. & Annadurai, G. Highly selective CO 2 sensing response of lanthanum oxide nanoparticle electrodes at ambient temperature. Nanoscale Adv. 5, 3761–3770 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dimski, D. S. Ammonia metabolism and the urea cycle: function and clinical implications. J. Vet. Intern. Med. 8, 73–78 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ricci, P. P. & Gregory, O. J. Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 11, 7185 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amano, A., Yoshida, Y., Oho, T. & Koga, T. Monitoring ammonia to assess halitosis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontol. 94, 692–696 (2002).

    Article 

    Google Scholar 

  • Wu, G. et al. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sens. Actuators B Chem. 375, 132858 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fujita, H. et al. Paper‐based wearable ammonia gas sensor using organic–inorganic composite PEDOT: PSS with Iron (III) compounds. Adv. Mater. Technol. 7, 2101486 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, H. et al. Wearable dual-signal NH3 sensor with high sensitivity for non-invasive diagnosis of chronic kidney disease. Langmuir 39, 3420–3430 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stolarek, R., Bialasiewicz, P., Krol, M. & Nowak, D. Breath analysis of hydrogen peroxide as a diagnostic tool. Clin. Chim. Acta 411, 1849–1861 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Y. et al. Polyaniline/Prussian blue nanolayer enhanced electrochemical sensing of H2O2 in EBC using an integrated condensation facemask. Sens. Actuators B Chem. 393, 134189 (2023).

  • Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xue, Q. et al. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 186, 113286 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trung, T. Q. & Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, R. et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: a promising candidate for portable breath monitoring devices. Nano Energy 80, 105537 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhong, J. et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34, 2107758 (2022).

    Article 
    CAS 

    Google Scholar 

  • Joo, Y. et al. Highly sensitive and bendable capacitive pressure sensor and its application to 1 V operation pressure‐sensitive transistor. Adv. Electron. Mater. 3, 1600455 (2017).

    Article 

    Google Scholar 

  • Ji, S. et al. High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv. Mater. 29, 1700538 (2017).

    Article 

    Google Scholar 

  • Yang, W. et al. A breathable and screen‐printed pressure sensor based on nanofiber membranes for electronic skins. Adv. Mater. Technol. 3, 1700241 (2018).

    Article 

    Google Scholar 

  • Meng, K. et al. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sun, Z. et al. Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring. ACS Appl. Mater. Interfaces 12, 13287–13295 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. et al. Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 13, 60531–60543 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, J. et al. A wearable self‐powered multi‐parameter respiration sensor. Adv. Mater. Technol. 8, 2201535 (2023).

    Article 

    Google Scholar 

  • Zheng, H. et al. Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing. ACS Appl. Mater. Interfaces 10, 14708–14715 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Popov, T. A. Human exhaled breath analysis. Ann. Allergy Asthma Immunol. 106, 451–456 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carpagnano, G. E. et al. Exhaled breath temperature home monitoring to detect NSCLC relapse: results from a pilot study. BioMed. Res. Int. 2022, 1515274 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paredi, P., Kharitonov, S. A. & Barnes, P. J. Faster rise of exhaled breath temperature in asthma: a novel marker of airway inflammation? Am. J. Respir. Crit. Care Med. 165, 181–184 (2002).

    Article 
    PubMed 

    Google Scholar 

  • García, G., Bergna, M., Uribe, E., Yañez, A. & Soriano, J. Increased exhaled breath temperature in subjects with uncontrolled asthma. Int. J. Tuberc. Lung Dis. 17, 969–972 (2013).

    Article 
    PubMed 

    Google Scholar 

  • AL‐Khalidi, F. Q., Saatchi, R., Burke, D., Elphick, H. & Tan, S. Respiration rate monitoring methods: a review. Pediatr. Pulmonol. 46, 523–529 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Liao, F. et al. Ultrafast response flexible breath sensor based on vanadium dioxide. J. Breath. Res. 11, 036002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Shin, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32, 1905527 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gandla, S. et al. Highly linear and stable flexible temperature sensors based on laser‐induced carbonization of polyimide substrates for personal mobile monitoring. Adv. Mater. Technol. 5, 2000014 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Mater. Today Phys. 13, 100199 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zhao, T. et al. Tracing the Flu Symptom Progression via a Smart Face Mask. Nano Lett. 23, 8960–8969 (2023).

  • Kim, D. H. et al. Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor. Adv. Funct. Mater. 32, 2200463 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xue, H. et al. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38, 147–154 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Roy, K. et al. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2, 2013–2025 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, M. J. et al. Breathing‐driven self‐powered pyroelectric ZnO integrated face mask for bioprotection. Small 19, 2200712 (2023).

    Article 
    CAS 

    Google Scholar 

  • Whatmore, R. Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bowen, C. R. et al. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014).

    Article 

    Google Scholar 

  • Kaminsky, D. A., Bates, J. H. & Irvin, C. G. Effects of cool, dry air stimulation on peripheral lung mechanics in asthma. Am. J. Respir. Crit. Care Med. 162, 179–186 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, R. E., McGregor, G. R. & Enfield, K. B. Humidity: a review and primer on atmospheric moisture and human health. Environ. Res. 144, 106–116 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duan, Z., Jiang, Y. & Tai, H. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 9, 14963–14980 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pan, T. et al. Flexible humidity sensor with high sensitivity and durability for respiratory monitoring using near-field electrohydrodynamic direct-writing method. ACS Appl. Mater. Interfaces 15, 28248–28257 (2023).

  • Kim, H.-S., Kang, J.-H., Hwang, J.-Y. & Shin, U. S. Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring. Nano Converg. 9, 1–14 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, J. et al. High‐sensitivity and low‐hysteresis GO–NH2/Mesoporous SiO2 nanosphere‐fabric‐based humidity sensor for respiratory monitoring and noncontact sensing. Adv. Mater. Interfaces 9, 2101498 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pang, Y. et al. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adhyapak, P. V., Kasabe, A. M., Bang, A. D., Ambekar, J. & Kulkarni, S. K. Highly sensitive, room temperature operated gold nanowire-based humidity sensor: adoptable for breath sensing. RSC Adv. 12, 1157–1164 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, Z. et al. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11, 21840–21849 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fitzpatrick, M. F. et al. Effect of nasal or oral breathing route on upper airway resistance during sleep. Eur. Respir. J. 22, 827–832 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watso, J. C. et al. Acute nasal breathing lowers diastolic blood pressure and increases parasympathetic contributions to heart rate variability in young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 325, R797–R808 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jefferson, Y. Mouth breathing: adverse effects on facial growth, health, academics, and behavior. Gen. Dent. 58, 18–25 (2010).

    PubMed 

    Google Scholar 

  • Arman Kuzubasoglu, B. Recent studies on the humidity sensor: a mini review. ACS Appl. Electron. Mater. 4, 4797–4807 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu, Y., Yang, G., Shen, Y., Yang, H. & Xu, K. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano Micro Lett. 14, 150 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jin, X., Zha, L., Wang, F., Wang, Y. & Zhang, X. Fully integrated wearable humidity sensor for respiration monitoring. Front. Bioeng. Biotechnol. 10, 1070855 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deb, M. et al. SnO2-based ultra-flexible humidity/respiratory sensor for analysis of human breath. Biosensors 13, 81 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, X. et al. High‐performance flexible humidity sensors for breath detection and non‐touch switches. Nano Sel. 3, 1168–1177 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, J. et al. High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30, 4343–4354 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Honda, S., Hara, H., Arie, T., Akita, S. & Takei, K. A wearable, flexible sensor for real-time, home monitoring of sleep apnea. Iscience 25, 104163 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soomro, A. M. et al. All-range flexible and biocompatible humidity sensor based on poly lactic glycolic acid (PLGA) and its application in human breathing for wearable health monitoring. J. Mater. Sci. Mater. Electron. 30, 9455–9465 (2019).

    Article 
    CAS 

    Google Scholar 

  • Güder, F. et al. Paper‐based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).

    Article 

    Google Scholar 

  • Wang, Y., Zhang, L., Zhou, J. & Lu, A. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 12, 7631–7638 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinha, A., Stavrakis, A. K., Simic, M. & Stojanovic, G. M. Polymer-thread-based fully textile capacitive sensor embroidered on a protective face mask for humidity detection. ACS Omega 7, 44928–44938 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning. Microsyst. Nanoeng. 7, 99 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G. et al. A nanoforest-based humidity sensor for respiration monitoring. Microsyst. Nanoeng. 8, 44 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuators B Chem. 299, 126973 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kanaparthi, S. Pencil‐drawn paper‐based non‐invasive and wearable capacitive respiration sensor. Electroanalysis 29, 2680–2684 (2017).

    Article 
    CAS 

    Google Scholar 

  • Simić, M. et al. Portable respiration monitoring system with an embroidered capacitive facemask sensor. Biosensors 12, 339 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benchetrit, G. Breathing pattern in humans: diversity and individuality. Respir. Physiol. 122, 123–129 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fang, Y. et al. A deep‐learning‐assisted on‐mask sensor network for adaptive respiratory monitoring. Adv. Mater. 34, 2200252 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tobin, M. J. et al. Breathing patterns: 2. Diseased subjects. Chest 84, 286–294 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, K. et al. Biodegradable smart face masks for machine learning-assisted chronic respiratory disease diagnosis. ACS Sens. 7, 3135–3143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, L. et al. Lab-on-mask for remote respiratory monitoring. ACS Mater. Lett. 2, 1178–1181 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Curtiss, A. et al. FaceBit: smart face masks platform. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 1–44 (2021).

    Article 

    Google Scholar 

  • Kim, J.-H. et al. A conformable sensory face mask for decoding biological and environmental signals. Nat. Electron. 5, 794–807 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pham, Y. L. & Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules 26, 5514 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, J. et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 5, 3–55 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cikach, F. S. Jr & Dweik, R. A. Cardiovascular biomarkers in exhaled breath. Prog. Cardiovasc. Dis. 55, 34–43 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Wei, X., Zhou, Y., Wang, J. & You, R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst. Nanoeng. 9, 129 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bordbar, M. M. et al. Mask assistance to colorimetric sniffers for detection of Covid-19 disease using exhaled breath metabolites. Sens. Actuators B Chem. 369, 132379 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, L. W. et al. Engineering synthetic breath biomarkers for respiratory disease. Nat. Nanotechnol. 15, 792–800 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Djago, F., Lange, J. & Poinot, P. Induced volatolomics of pathologies. Nat. Rev. Chem. 5, 183–196 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lange, J. et al. Volatile organic compound based probe for induced volatolomics of cancers. Angew. Chem. Int. Ed. 58, 17563–17566 (2019).

    Article 
    CAS 

    Google Scholar 

  • Damodaran, V. B. & Murthy, N. S. Bio-inspired strategies for designing antifouling biomaterials. Biomater. Res. 20, 1–11 (2016).

    Article 

    Google Scholar 

  • Blossey, R. Self-cleaning surfaces—virtual realities. Nat. Mater. 2, 301–306 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *