In-hospital airway management of COVID-19 patients | Critical Care

In-hospital airway management of COVID-19 patients | Critical Care

In preparation for intubation, patients must have intravenous access and at minimum the basic physiologic monitors recommended by the American Society of Anesthesiologists. This includes continuous pulse oximetry, ECG, and blood pressure monitoring. The ART will need working suction, availability of appropriate difficult airway equipment including laryngeal mask airways (LMA), PEEP valve, gum elastic bougies, video laryngoscope, colorimetric capnography or, ideally, waveform capnography, and a ventilator at bedside. All necessary equipment and medications should be prepared prior to entry into the room of a patient with COVID-19 infection so as to minimize the duration of possible exposure.

The team should ensure that a high minimum efficiency reporting value (MERV) rated filter, such as a high efficiency particulate air (HEPA) filter, is placed on the ventilator circuit directly at the site of connection with the endotracheal tube prior to use [16]. Based on patient comorbidities and potential hemodynamic instability during the intubation process, appropriate vasopressors should be available and in line prior to intubation.

There are several special procedure-related considerations for intubation that the team should bear in mind. To minimize exposure of healthcare providers during intubation, patients with suspected or confirmed COVID-19 should be roomed in negative pressure suites with full airborne precautions. The choice of neuromuscular blocking agents for these patients remains a topic of debate. Cheung et al. [7] recommend a rapid sequence intubation approach using a high dose of nondepolarizing agent, such as rocuronium, rather than succinylcholine. The longer duration of action of rocuronium prevents aerosolization via patient coughing in the event of multiple attempts at intubation, whereas succinylcholine has a duration of effect lasting only 3–5 min. An increased dose of rocuronium (greater than or equal to 1.2 mg/kg) reduces time to drug onset, which reduces the risk of patient coughing during intubation. Alternatively, succinylcholine given its rapid onset and recovery time may be preferred in the absence of contraindications such as long-term immobility, family history of malignant hyperthermia, certain neuromuscular disorders, and marked hyperkalemia. Use of intravenous lidocaine (1.5 mg/kg) and avoidance of fentanyl are additional strategies which may help prevent coughing. Lidocaine should be used with caution and should be avoided in hemodynamically unstable patients. Awake fiberoptic intubation should be minimized in COVID-19-positive patients as coughing is common with this procedure, conferring risk of infection to those involved. Atomization of local anesthetic for airway topicalization, as is required for these intubations, also risks aerosolizing patient sputum [15].

Bag-mask ventilation should be avoided in COVID-19 patients when possible. Prior studies have found that manual ventilation before intubation was associated with an increased risk of SARS transmission [8] and poses a similar risk for COVID-19 transmission. High-quality preoxygenation with 100% inspired oxygen for 5–10 min is important to optimize patients prior to airway management. Some centers recommend using NIV for preoxygenation based on studies of non-COVID-19 patients with acute hypoxemic respiratory failure [17]. If this approach is used, the ventilator must be switched off between preoxygenation and intubation to decrease aerosolization. Our institution does not use this approach.

If post-induction ventilation is required prior to intubation, some experts recommend placing an LMA immediately after induction for potentially lower risk of aerosolization. If bag-mask ventilation is required, low tidal volumes should be used and all precautions should be taken to avoid leaks. Air flows should be switched off during laryngoscopy. If a difficult airway is anticipated, or if the patient shows signs of tenuous oxygenation and a risk of rapid desaturation, a surgical airway team should be prepared at bedside. Routine use of video laryngoscopy has been suggested to provide additional distance between the intubating clinician and the airway. We also recommend a low threshold to escalate to a surgical airway in order to avoid repeated instrumentation of a difficult airway in COVID-19 patients and the subsequent precipitous emergent surgical airway. All clinicians involved in airway management should be clearly informed of the patient’s COVID-19 confirmed or presumptive diagnosis, and the most experienced provider should perform the intubation. To further minimize exposure, the number of providers present in the room during intubation should be limited to only those who are essential.

Given the extremely high risk of viral transmission to all involved in the care of an arresting COVID-19 patient actively receiving chest compressions, it is crucial that all providers properly don PPE prior to attempting intubation or bag-mask ventilation. Although PPE should be made available, if a circumstance arises where it is not possible to don PPE, LMA placement rather than endotracheal intubation should be considered. Intubation may be attempted in a more controlled setting after return of spontaneous circulation (ROSC).

link

Leave a Reply

Your email address will not be published. Required fields are marked *