December 10, 2024

Vitavo Yage

Best Health Creates a Happy Life

Ventilator-associated pneumonia: pathobiological heterogeneity and diagnostic challenges

Ventilator-associated pneumonia: pathobiological heterogeneity and diagnostic challenges
  • Kollef, M. H. What is ventilator-associated pneumonia and why is it important? Respir. Care 50, 714–721 (2005).

    PubMed 

    Google Scholar 

  • Zolfaghari, P. S. & Wyncoll, D. L. The tracheal tube: gateway to ventilator-associated pneumonia. Crit. Care 15, 310 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safdar, N., Dezfulian, C., Collard, H. R. & Saint, S. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit. Care Med. 33, 2184–2193 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Torres, A. et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur. Respiratory J. 50, 1700582 (2017).

    Article 

    Google Scholar 

  • Barbier, F., Andremont, A., Wolff, M. & Bouadma, L. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr. Opin. Pulm. Med. 19, 216–228 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Timsit, J. F., Esaied, W., Neuville, M., Bouadma, L. & Mourvllier, B. Update on ventilator-associated pneumonia. F1000Res 6, 2061 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semet, C. The ongoing challenge of ventilator-associated pneumonia: epidemiology, prevention, and risk factors for mortality in a secondary care hospital intensive care unit. Infect. Prev. Pract. 5, 100320 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernando, S. M. et al. Diagnosis of ventilator-associated pneumonia in critically ill adult patients-a systematic review and meta-analysis. Intensive Care Med. 46, 1170–1179 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, J. P.III. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. CHEST 119, 373S–384SS (2001).

    Article 
    PubMed 

    Google Scholar 

  • Wu, D., Wu, C., Zhang, S. & Zhong, Y. Risk factors of ventilator-associated pneumonia in critically III patients. Front Pharm. 10, 482 (2019).

    Article 
    CAS 

    Google Scholar 

  • ECDC. European Centre for Disease Prevention and Control. European surveillance of healthcare- associated infections in intensive care units – HAI-Net ICU protocol Stockholm: ECDC. (2015).

  • Chastre, J. & Fagon, J. Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 165, 867–903 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Melsen, W. G. et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect. Dis. 13, 665–671 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fabregas, N. et al. Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 84, 760–771 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Craven, D. E. & Hjalmarson, K. I. Ventilator-associated tracheobronchitis and pneumonia: thinking outside the box. Clin. Infect. Dis. 51, S59–S66 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Vincent, J. L. et al. The prevalence of nosocomial infection in intensive care units in Europe. results of the European Prevalence of Infection in Intensive Care (EPIC) study. EPIC International Advisory Committee. Jama 274, 639–644 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Browne, E. et al. A national survey of the diagnosis and management of suspected ventilator-associated pneumonia. BMJ Open Respir. Res 1, e000066 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rello, J. et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 122, 2115–2121 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Hunter, J. D. Ventilator associated pneumonia. Bmj 344, e3325 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y., Liu, C., Xiao, W., Song, T. & Wang, S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care 32, 272–285 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teixeira, P. J. Z., Seligman, R., Hertz, F., Cruz, D. & Fachel, J. Inadequate treatment of ventilator-associated pneumonia: risk factors and impact on outcomes. J. Hospital Infect. 65, 361–367 (2007).

    Article 
    CAS 

    Google Scholar 

  • Domínguez A. A., Arango M. V. & Torres A. Treatment failure in patients with ventilator-associated pneumonia. Semin. Respir. Crit. Care Med. 27, 104–14 (2006).

  • Gursel, G., Aydogdu, M., Ozyilmaz, E. & Ozis, T. N. Risk factors for treatment failure in patients with ventilator-associated pneumonia receiving appropriate antibiotic therapy. J. Crit. Care 23, 34–40 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Storms, A. D. et al. Rates and risk factors associated with hospitalization for pneumonia with ICU admission among adults. BMC Pulm. Med. 17, 208 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Omari, B. et al. Systematic review of studies investigating ventilator associated pneumonia diagnostics in intensive care. BMC Pulm. Med. 21, 196 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luckraz, H. et al. Cost of treating ventilator-associated pneumonia post cardiac surgery in the National Health Service: Results from a propensity-matched cohort study. J. Intensive Care Soc. 19, 94–100 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mietto, C., Pinciroli, R., Patel, N. & Berra, L. Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir. Care 58, 990–1007 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Young, P. J., Pakeerathan, S., Blunt, M. C. & Subramanya, S. A low-volume, low-pressure tracheal tube cuff reduces pulmonary aspiration. Crit. Care Med. 34, 632–639 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Carter, E. L. et al. Strategies to prevent ventilation-associated pneumonia: the effect of cuff pressure monitoring techniques and tracheal tube type on aspiration of subglottic secretions: an in-vitro study. Eur. J. Anaesthesiol. 31, 166–171 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Niederman, M. S. The clinical diagnosis of ventilator-associated pneumonia. Respir. Care 50, 788–796 (2005). discussion 807-12.

    PubMed 

    Google Scholar 

  • Jackson, L. & Owens, M. Does oral care with chlorhexidine reduce ventilator-associated pneumonia in mechanically ventilated adults? Br. J. Nurs. 28, 682–689 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Goetz, R. L., Vijaykumar, K. & Solomon, G. M. Mucus clearance strategies in mechanically ventilated patients. Front Physiol. 13, 834716 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konrad, F., Schreiber, T., Brecht-Kraus, D. & Georgieff, M. Mucociliary transport in ICU patients. Chest 105, 237–241 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lorente, L., Lecuona, M., Jiménez, A., Mora, M. L. & Sierra, A. Ventilator-associated pneumonia using a heated humidifier or a heat and moisture exchanger: a randomized controlled trial [ISRCTN88724583]. Crit. Care 10, R116 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deem, S. & Treggiari, M. M. New endotracheal tubes designed to prevent ventilator-associated pneumonia: do they make a difference? Respir. Care 55, 1046–1055 (2010).

    PubMed 

    Google Scholar 

  • Adair, C. G. et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med. 25, 1072–1076 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris A. C. Management of pneumonia in intensive care. J. Emgy Crit. Care Med. 2 (2018).

  • Biel, M. A. et al. Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg. Med. 43, 586–590 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delle Rose, D. et al. Clinical predictors and microbiology of ventilator-associated pneumonia in the intensive care unit: a retrospective analysis in six Italian hospitals. Eur. J. Clin. Microbiol Infect. Dis. 35, 1531–1539 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hellyer, T. P. et al. Diagnostic accuracy of pulmonary host inflammatory mediators in the exclusion of ventilator-acquired pneumonia. Thorax 70, 41–47 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Azoulay, E. et al. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 129, 110–117 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Mandelli, M., Mosconi, P., Langer, M. & Cigada, M. IS PNEUMONIA DEVELOPING IN PATIENTS IN INTENSIVE CARE ALWAYS A TYPICAL “NOSOCOMIAL” INFECTION? Lancet 328, 1094–1095 (1986).

    Article 

    Google Scholar 

  • Ben Lakhal, H., M’Rad, A., Naas, T. & Brahmi, N. Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia. Infect. Dis. Rep. 13, 401–410 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ATS. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 171, 388–416 (2005).

    Article 

    Google Scholar 

  • Giantsou, E. et al. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med. 31, 1488–1494 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Vallés, J. et al. Excess ICU mortality attributable to ventilator-associated pneumonia: the role of early vs late onset. Intensive Care Med. 33, 1363–1368 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Restrepo, M. I. et al. Comparison of the bacterial etiology of early-onset and late-onset ventilator-associated pneumonia in subjects enrolled in 2 large clinical studies. Respiratory Care 58, 1220–1225 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Khan, R. et al. The impact of onset time on the isolated pathogens and outcomes in ventilator associated pneumonia. J. Infect. Public Health 9, 161–171 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gunalan, A., Sastry, A. S., Ramanathan, V. & Sistla, S. Early- vs late-onset ventilator-associated pneumonia in critically ill adults: comparison of risk factors, outcome, and microbial profile. Indian J. Crit. Care Med. 27, 411–415 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • TROUILLET, J.-L. et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am. J. Respiratory Crit. Care Med. 157, 531–539 (1998).

    Article 
    CAS 

    Google Scholar 

  • Loughlin, L. et al. Pulmonary aspergillosis in patients with suspected ventilator-associated pneumonia in UK ICUs. Am. J. Respiratory Crit. Care Med. 202, 1125–1132 (2020).

    Article 

    Google Scholar 

  • Huang, L. et al. Viral reactivation in the lungs of patients with severe pneumonia is associated with increased mortality, a multicenter, retrospective study. J. Med Virol. 95, e28337 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hellyer, T. P. et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. Lancet Respir. Med. 8, 182–191 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin-Loeches, I. et al. The importance of airway and lung microbiome in the critically ill. Crit. Care 24, 537 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández-Barat, L., López-Aladid, R. & Torres, A. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. EBioMedicine 60, 102995 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenn, D. et al. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit. Care (Lond., Engl.) 26, 203 (2022).

    Article 

    Google Scholar 

  • Zakharkina, T. et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 72, 803–810 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Torres, A. et al. Pneumonia. Nat. Rev. Dis. Prim. 7, 25 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Quinton, L. J., Walkey, A. J. & Mizgerd, J. P. Integrative physiology of pneumonia. Physiological Rev. 98, 1417–1464 (2018).

    Article 
    CAS 

    Google Scholar 

  • Joshi, N., Walter, J. M. & Misharin, A. V. Alveolar macrophages. Cell. Immunol. 330, 86–90 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikacenic, C. et al. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit. Care 22, 358 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, O. Z. & Palaniyar, N. NET balancing: a problem in inflammatory lung diseases. Front. Immunol. 4, 1 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porto, B. N. & Stein, R. T. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front. Immunol. 7, 311 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Narasaraju, T. et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179, 199–210 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conway Morris, A. et al. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia. Thorax 65, 201–207 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Greathouse, K. C. & Hall, M. W. Critical illness-induced immune suppression: current state of the science. Am. J. Crit. Care 25, 85–92 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Muszynski, J. A., Thakkar, R. & Hall, M. W. Inflammation and innate immune function in critical illness. Curr. Opin. Pediatr. 28, 267–273 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halbertsma, F. J., Vaneker, M., Scheffer, G. J. & van der Hoeven, J. G. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth. J. Med. 63, 382–392 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Grover, V. et al. A biomarker panel (Bioscore) incorporating monocytic surface and soluble TREM-1 has high discriminative value for ventilator-associated pneumonia: a prospective observational study. PLOS ONE 9, e109686 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horn, K. J., Fulte, S., Yang, M., Lorenz, B. P. & Clark, S. E. Neutrophil responsiveness to IL-10 impairs clearance of Streptococcus pneumoniae from the lungs. J. Leukoc. Biol. 115, 4–15 (2023).

    Article 

    Google Scholar 

  • Fàbregas, N. et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax 54, 867–873 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torres, A., Fábregas, N., Arce, Y. & López-Boado, M. A. Histopathology of ventilator-associated pneumonia (VAP) and its clinical implications. Infection 27, 71–76 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rouby, J. J. et al. Nosocomial bronchopneumonia in the critically ill. histologic and bacteriologic aspects. Am. Rev. Respir. Dis. 146, 1059–1066 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rotstein, C. et al. Clinical practice guidelines for hospital-acquired pneumonia and ventilator-associated pneumonia in adults. Can. J. Infect. Dis. Med Microbiol 19, 19–53 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masterton, R. G. et al. Guidelines for the management of hospital-acquired pneumonia in the UK: report of the working party on hospital-acquired pneumonia of the British Society for antimicrobial chemotherapy. J. Antimicrob. Chemother. 62, 5–34 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalil, A. C. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 63, e61–e111 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ego, A., Preiser, J. C. & Vincent, J. L. Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest 147, 347–355 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wang, G., Ji, X., Xu, Y. & Xiang, X. Lung ultrasound: a promising tool to monitor ventilator-associated pneumonia in critically ill patients. Crit. Care 20, 320 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuti, E. L., Patel, A. A. & Coleman, C. I. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: a meta-analysis. J. Crit. Care 23, 91–100 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Martin-Loeches, I. et al. Resistance patterns and outcomes in intensive care unit (icu)-acquired pneumonia. validation of European Centre For Disease Prevention And Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms. J. Infect. 70, 213–222 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mackenzie, G. The definition and classification of pneumonia. Pneumonia 8, 14 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mangram, A. J. et al. Trauma-associated pneumonia: time to redefine ventilator-associated pneumonia in trauma patients. Am. J. Surg. 210, 1056–1061 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cavalcanti, M. et al. Risk and prognostic factors of ventilator-associated pneumonia in trauma patients. Crit. Care Med. 34, 1067–1072 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Niederman, M. S. Hospital-acquired pneumonia, health care-associated pneumonia, ventilator-associated pneumonia, and ventilator-associated tracheobronchitis: definitions and challenges in trial design. Clin. Infect. Dis. 51, S12–S17 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Horan, T. C., Andrus, M. & Dudeck, M. A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 36, 309–332 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Self, W. H., Courtney, D. M., McNaughton, C. D., Wunderink, R. G. & Kline, J. A. High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am. J. Emerg. Med. 31, 401–405 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Nseir, S. et al. Nosocomial tracheobronchitis in mechanically ventilated patients: incidence, aetiology and outcome. Eur. Respiratory J. 20, 1483–1489 (2002).

    Article 
    CAS 

    Google Scholar 

  • Agrafiotis, M., Siempos, I. I. & Falagas, M. E. Frequency, prevention, outcome and treatment of ventilator-associated tracheobronchitis: Systematic review and meta-analysis. Respiratory Med. 104, 325–336 (2010).

    Article 

    Google Scholar 

  • Craven, D. E., Hudcova, J. & Lei, Y. Diagnosis of ventilator-associated respiratory infections (VARI): microbiologic clues for tracheobronchitis (VAT) and pneumonia (VAP). Clin. Chest Med. 32, 547–557 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahmoud, M., Towe, C. & Fleck, R. J. CT chest under general anesthesia: pulmonary, anesthetic and radiologic dilemmas. Pediatr. Radio. 45, 977–981 (2015).

    Article 

    Google Scholar 

  • Long, L., Zhao, H. T., Zhang, Z. Y., Wang, G. Y. & Zhao, H. L. Lung ultrasound for the diagnosis of pneumonia in adults: A meta-analysis. Med. (Baltim.) 96, e5713 (2017).

    Article 

    Google Scholar 

  • Lichtenstein, D. et al. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100, 9–15 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Nonami, S. et al. Incidence of adverse events associated with the in-hospital transport of critically ill patients. Crit. Care Explor 4, e0657 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, L., Wang, H., Gao, Y., Liu, H. & Yu, K. High incidence of adverse events during intra-hospital transport of critically ill patients and new related risk factors: a prospective, multicenter study in China. Crit. Care 20, 12 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckmann, U., Gillies, D. M., Berenholtz, S. M., Wu, A. W. & Pronovost, P. Incidents relating to the intra-hospital transfer of critically ill patients. Intensive Care Med. 30, 1579–1585 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Delrue L., et al. Difficulties in the interpretation of chest radiography. Springer; 2011).

  • Chavez, M. A. et al. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir. Res 15, 50 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardinale, L., Volpicelli, G., Lamorte, A. & Martino, J. Revisiting signs, strengths and weaknesses of standard chest radiography in patients of acute dyspnea in the emergency department. J. Thorac. Dis. 4, 398–407 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Staub, L. J., Biscaro, R. R. M. & Maurici, R. Accuracy and applications of lung ultrasound to diagnose ventilator-associated pneumonia: a systematic review. J. Intensive Care Med. 33, 447–455 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lichtenstein, D. A. BLUE-Protocol and FALLS-Protocol: two applications of lung ultrasound in the critically ill. Chest 147, 1659–1670 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mongodi, S. et al. Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest 149, 969–980 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Bouhemad, B., Dransart-Rayé, O., Mojoli, F. & Mongodi, S. Lung ultrasound for diagnosis and monitoring of ventilator-associated pneumonia. Ann. Transl. Med. 6, 418 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xirouchaki, N. et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 37, 1488–1493 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pradhan, S., Shrestha, P. S., Shrestha, G. S. & Marhatta, M. N. Clinical impact of lung ultrasound monitoring for diagnosis of ventilator associated pneumonia: a diagnostic randomized controlled trial. J. Crit. Care 58, 65–71 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gaber, S., Tayeh, O., Wahab, K. A., Mohamed, N. & Essawy, T. Early detection of ventilator-associated pneumonia: bedside tools. Egypt. J. Crit. Care Med. 7, 74–79 (2020).

    Google Scholar 

  • Nafae, R., Eman, S. R., Mohamad, N. A., El-Ghamry, R. & Ragheb, A. S. Adjuvant role of lung ultrasound in the diagnosis of pneumonia in intensive care unit-patients. Egypt. J. Chest Dis. Tuberculosis 62, 281–285 (2013).

    Article 

    Google Scholar 

  • Masterton, R. et al. Hospital-acquired pneumonia guidelines in Europe: a review of their status and future development. J. Antimicrob. Chemother. 60, 206–213 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berton, D. C., Kalil, A. C. & Teixeira, P. J. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014, Cd006482 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koulenti, D. et al. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit. Care Med. 37, 2360–2368 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Bonvento, B. et al. Non-directed bronchial lavage is a safe method for sampling the respiratory tract in critically ill patient. J. Intensive Care Soc. 20, 237–241 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perkins, G. D. et al. Safety and tolerability of nonbronchoscopic lavage in ARDS. Chest 127, 1358–1363 (2005).

    PubMed 

    Google Scholar 

  • Flanagan, P. et al. The diagnosis of ventilator-associated pneumonia using non-bronchoscopic, non-directed lung lavages. Intensive care Med. 26, 20–30 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shorr, A. F., Sherner, J. H., Jackson, W. L. & Kollef, M. H. Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit. Care Med. 33, 46–53 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Monard, C. et al. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit. Care 24, 434 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maataoui, N. et al. Impact of rapid multiplex PCR on management of antibiotic therapy in COVID-19-positive patients hospitalized in intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 40, 2227–2234 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srivastava, S. et al. Utility of a multiplex pathogen detection system directly from respiratory specimens for treatment and diagnostic stewardship. Microbiol Spectr. 12, e0375923 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Vaz, A. P. et al. [Positive bronchoalveolar lavage and quantitative cultures results in suspected late-onset ventilator associated penumonia evaluation-retrospective study]. Rev. Port. Pneumol. 17, 117–123 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fleig, V., Brenck, F., Wolff, M. & Weigand, M. A. Scoring systems in intensive care medicine: principles, models, application and limits. Anaesthesist 60, 963–974 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oprita B., Aignatoaie B., Gabor-Postole D. A. Scores and scales used in emergency medicine. practicability in toxicology. J Med Life. 2014; 7 Spec No. 3(Spec Iss 3):4-7.

  • Bouch, D. C. & Thompson, J. P. Severity scoring systems in the critically ill. Continuing Educ. Anaesth. Crit. Care Pain. 8, 181–185 (2008).

    Article 

    Google Scholar 

  • Shan, J., Chen, H. L. & Zhu, J. H. Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis. Respir. Care 56, 1087–1094 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pugin, J. et al. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am. Rev. Respir. Dis. 143, 1121–1129 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schurink, C. A. M. et al. Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive Care Med. 30, 217–224 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Gaudet, A. et al. Accuracy of the clinical pulmonary infection score to differentiate ventilator-associated tracheobronchitis from ventilator-associated pneumonia. Ann. Intensive Care 10, 101 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zilberberg, M. D. & Shorr, A. F. Ventilator-associated pneumonia: the clinical pulmonary infection score as a surrogate for diagnostics and outcome. Clin. Infect. Dis. 51, S131–S135 (2010). Suppl 1.

    Article 
    PubMed 

    Google Scholar 

  • Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palazzo, S. J., Simpson, T. & Schnapp, L. Biomarkers for ventilator-associated pneumonia: review of the literature. Heart Lung 40, 293–298 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. World Health Organization. Environmental Health Criteria 222. Biomarkers In Risk Assessment: Validity And Validation Geneva 2001; (2021).

  • Kumar, A. & Lodha, R. Biomarkers for diagnosing ventilator associated pneumonia: is that the way forward? Indian J. Pediatrics 85, 411–412 (2018).

    Article 

    Google Scholar 

  • Tekerek, N. U., Akyildiz, B. N., Ercal, B. D. & Muhtaroglu, S. New biomarkers to diagnose ventilator associated pneumonia: pentraxin 3 and surfactant protein D. Indian J. Pediatrics 85, 426–432 (2018).

    Article 

    Google Scholar 

  • Xu C., Li S., Wang Y., Zhang M., Zhou M. Biomarkers in intensive care unit infections, friend or foe? J. Crit. Care Med. 40, 465–475 (2019).

  • Hellyer, T. P. The evaluation of a biomarker-based exclusion of ventilator-associated pneumonia to improve antibiotic stewardship. a multi-centre validation study and randomised controlled trial. J. Intensive Care Soc. 20, 245–247 (2019).

    Google Scholar 

  • Charles, P. E. et al. Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report. BMC Infect. Dis. 9, 49 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, F. et al. Procalcitonin levels predict bacteremia in patients with community-acquired pneumonia: a prospective cohort trial. Chest 138, 121–129 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Luyt, C. E. et al. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med. 34, 1434–1440 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Dallas, J. et al. Diagnostic utility of plasma procalcitonin for nosocomial pneumonia in the intensive care unit setting. Respir. Care 56, 412–419 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Ramirez, P. et al. Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur. Respir. J. 31, 356–362 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duflo, F. et al. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology 96, 74–79 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanrıverdi, H. et al. Prognostic value of serum procalcitonin and C-reactive protein levels in critically ill patients who developed ventilator-associated pneumonia. Ann. Thorac. Med. 10, 137–142 (2015).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jensen, J. U. et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit. Care Med. 39, 2048–2058 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bopp, C. et al. Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and nonsurvivors in the early stage of acute inflammation. Eur. J. Anaesthesiol. 26, 504–507 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palazzo, S. J., Simpson, T. A., Simmons, J. M. & Schnapp, L. M. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as a diagnostic marker of ventilator-associated pneumonia. Respir. Care 57, 2052–2058 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Anand, N. J., Zuick, S., Klesney-Tait, J. & Kollef, M. H. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in BAL fluid of patients with pulmonary infiltrates in the ICU. Chest 135, 641–647 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Determann, R. M. et al. Serial changes in soluble triggering receptor expressed on myeloid cells in the lung during development of ventilator-associated pneumonia. Intensive Care Med. 31, 1495–1500 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Horonenko, G. et al. Soluble triggering receptor expressed on myeloid cell-1 is increased in patients with ventilator-associated pneumonia: a preliminary report. Chest 132, 58–63 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gibot, S. et al. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N. Engl. J. Med. 350, 451–458 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torres, A., Artigas, A. & Ferrer, R. Biomarkers in the ICU: less is more? no. Intensive Care Med. 47, 97–100 (2021).

    Article 
    PubMed 

    Google Scholar 

  • van de Sande, D., van Genderen, M. E., Huiskens, J., Gommers, D. & van Bommel, J. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med. 47, 750–760 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, Y. et al. Early prediction of ventilator-associated pneumonia in critical care patients: a machine learning model. BMC polm. 22, 250 (2022).

    Google Scholar 

  • Becker J., et al. Artificial intelligence-based detection of pneumonia in chest radiographs. Diagnostics (Basel). 12, 1465 (2022).

  • Chumbita M., et al. Can artificial intelligence improve the management of pneumonia?. J. Clin. Med. 9, 248 (2020).

  • Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–31.e9 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stephen, O., Sain, M., Maduh, U. J. & Jeong, D.-U. An efficient deep learning approach to pneumonia classification in healthcare. J. Healthc. Eng. 2019, 4180949 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heckerling, P. S., Gerber, B. S., Tape, T. G. & Wigton, R. S. Prediction of community-acquired pneumonia using artificial neural networks. Med. Decis. Mak. 23, 112–121 (2003).

    Article 

    Google Scholar 

  • Hwang, E. J. et al. Deep learning for chest radiograph diagnosis in the emergency department. Radiology 293, 573–580 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Giang, C. et al. Predicting ventilator-associated pneumonia with machine learning. Med. (Baltim.) 100, e26246 (2021).

    Article 

    Google Scholar 

  • Bardossy, A. C., Zervos, J. & Zervos, M. Preventing hospital-acquired infections in low-income and middle-income countries: impact, gaps, and opportunities. Infect. Dis. Clin. North Am. 30, 805–818 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Bonell, A. et al. A systematic review and meta-analysis of ventilator-associated pneumonia in adults in asia: an analysis of national income level on incidence and etiology. Clin. Infect. Dis. 68, 511–518 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • Arabi, Y., Al-Shirawi, N., Memish, Z. & Anzueto, A. Ventilator-associated pneumonia in adults in developing countries: a systematic review. Int J. Infect. Dis. 12, 505–512 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Mathai, A. S., Phillips, A., Kaur, P. & Isaac, R. Incidence and attributable costs of ventilator-associated pneumonia (VAP) in a tertiary-level intensive care unit (ICU) in northern India. J. Infect. Public Health 8, 127–135 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sanders, S., Doust, J. & Glasziou, P. A Systematic review of studies comparing diagnostic clinical prediction rules with clinical judgment. PLOS ONE 10, e0128233 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fine, M. J. et al. The hospital admission decision for patients with community-acquired pneumonia. results from the pneumonia patient outcomes research team cohort study. Arch. Intern Med. 157, 36–44 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lim, W. S. et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 58, 377–382 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewig, S. et al. Prognostic analysis and predictive rule for outcome of hospital-treated community-acquired pneumonia. Eur. Respir. J. 8, 392–397 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spindler, C. & Ortqvist, A. Prognostic score systems and community-acquired bacteraemic pneumococcal pneumonia. Eur. Respir. J. 28, 816–823 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.